

University Of Basrah Al-Zahraa College Of Medicine

The module: Molecular, Gene and Diseases

Session 2: Lec2

Lecture Title: Haemoglobin and Myoglobin

Module staff:

Dr. Wameedh Hashim Alqatrani

Dr. Hussein K. Abdul-Sada

Dr. Hazim Talib

Dr. Zainab Ahmad

Dr. Amani Niama

Dr. Zainab Muzahim

Assist.Lect. Amna Shaker

Assist.Lect. Amel Aadil

Module staff:

Dr. Douaa saadi salim

Dr. Farqad M. Al-Hamdani

Dr. Abeer Leyali Mohammed

Dr. Zainab Khalid

Dr. Maiada Abdulah

Assist.Lect.Mohammed

Abdullah

Assist.Lect. Ibrahim Ayad

Module staff:

Dr. Inas Ryadh

Dr. Hamid Jadoa

Dr. Ilham Mohamed Jawad

Dr. Ban M. Saleh

Dr. Shant Sunbat

Assist.Lect. Eatidal Akram

Assist.Lect. Taif Ibrahim

For more detailed instructions, any question, or you have a case you need help in, please post to the group of session

The Learning Objectives (LO)

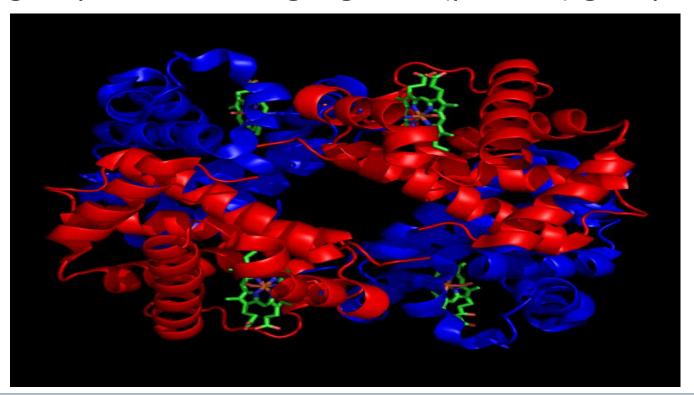
- 1. Explain the physiological roles of myoglobin and haemoglobin.
- 2. Contrast the oxygen-binding properties of myoglobin and haemoglobin and explain why haemoglobin is most suited to its role as an oxygen transporter.

- 3. Describe the major structural differences between oxygenated and deoxygenated haemoglobin and the molecular basis of cooperativity.
- 4. Describe the effects of CO₂, H⁺, 2'3bisphosphoglycerate and CO on the binding of O₂ by Hb, and the physiological significance of these effects.
- 5. Appreciate that mutations in globin genes can give rise to diseases such as sickle cell anaemia or thalassemia.

Haemoglobin:

Is an iron containing protein that transports oxygen (O_2) in human blood from the lungs to the tissues of the body.

Haemoglobin = heme + globin

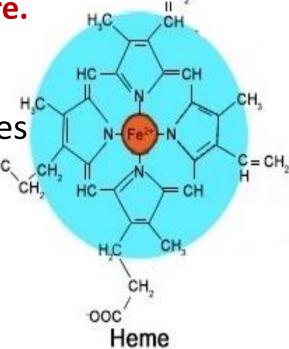


Structure of haemoglobin

LO 1

Each haemoglobin molecule is made up of four heme

(iron) groups surrounding a globin (protein) group.



Heme

is an iron porphyrin compound.

Porphyrin is a tetrapyrrole structure.

Ferrous iron occupies the center of the porphyrin ring and establishes linkages with all the four nitrogens of all the pyrrole rings.

Heme

LO 1

- > Iron attached to six coordinated bonds
 - 4 coordinated bonds planer
 - 1 coordinated bond linked to O2
 - 1 coordinated bond linked to Histidine A.A of α or β globin chain
- The central iron provides the reversible binding to oxygen and carbon dioxide molecules.

University Of Basrah Al-Zahraa College Of Medicine

Ministry Of Higher Education And Scientific Research

In which compounds can we find a heme group

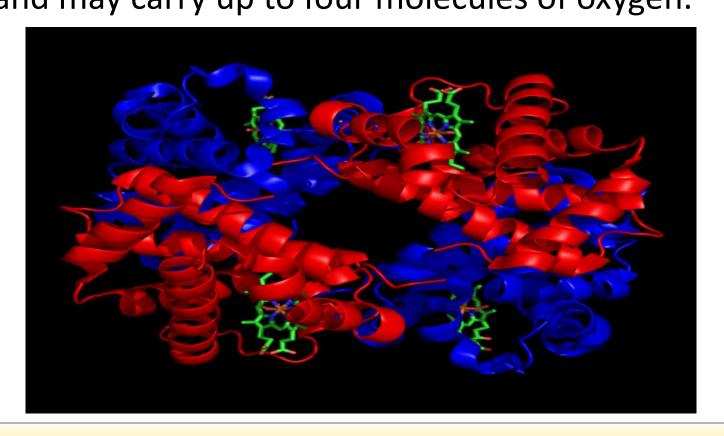
Haemoglobin (Hb).

Myoglobin (Mb).

Cytochromes.

Peroxidase.

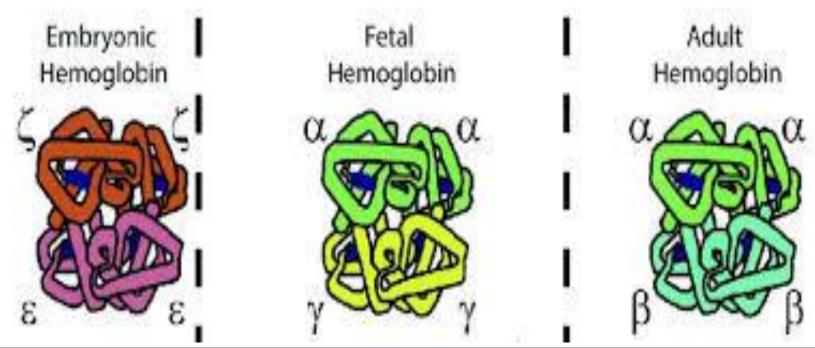
Globin: LO 1


- ➤ Hb comprises two pairs of globin chains that are twisted together .
- Normal adult hemoglobin contains 141 A.A in each alpha chain and 146 A.A in each β chain.

> The complete haemoglobin molecule contains four haem groups attached to each of four globin chains and may carry up to four molecules of oxygen.

Normal Hb types in adults

- The main type of Hb is:
 - 1. HbA₁ $(\alpha_2\beta_2)$ (97%) consisting of 2 pairs of globin chains α (141 AA residues) and β (146 AA residues)
 - 2. HbA₂ ($\alpha_2\delta_2$) (2-3%) also found in adult but in small amount.


- 3. HbF (fetal hemoglobin)($\alpha_2\gamma_2$): Is present primarily in embryonic life, and usually disappears from the circulation by the age of **6 months**.
 - HbF represents less than 1% of the Hb in adults.
 - It having a greater affinity for oxygen than adult haemoglobin.

4. Gower 1 and 2: are synthesized by the embryonic yolk sac during the first month after conception.

HbE Gower1 (zeta₂ ϵ_2), HbE Gower-2 ($\alpha_2\epsilon_2$)

NORMAL HEMOGLOBIN

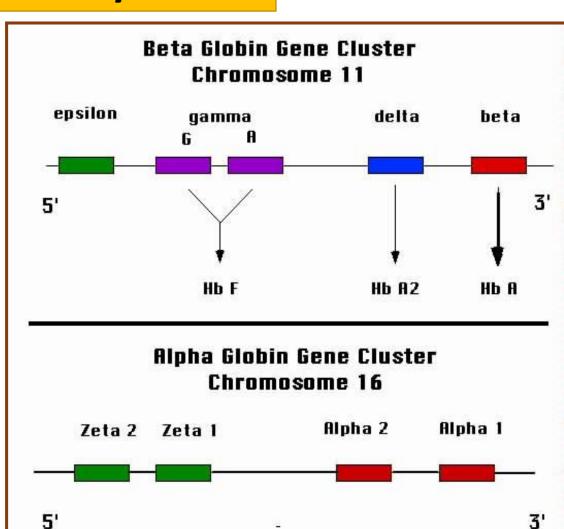
ТҮРЕ	COMPOSITION AND SYMBOL	% OF TOTALHEMOGLOBIN
HbA1	α2β2	97%
HbA2	α2δ2	2%
HbF	α2γ2	<1% (at birth 80%)

Haemoglobin synthesis

LO 1

Globin

Synthesized by ribosomes in the cytosol.


Embryonic haemoglobins

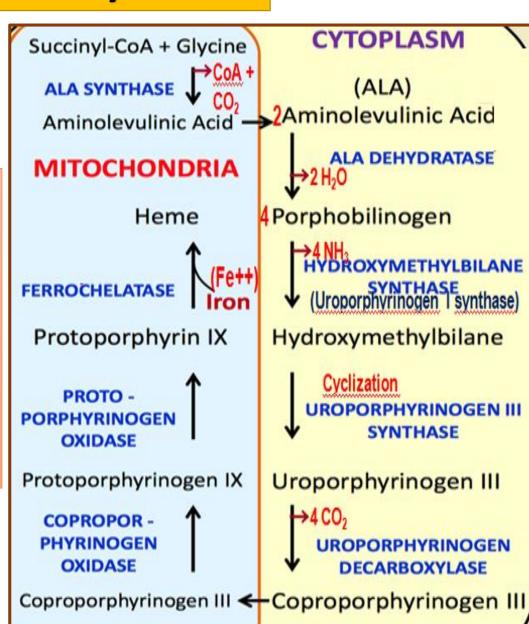
Gower 1- zeta(2), epsilon(2)

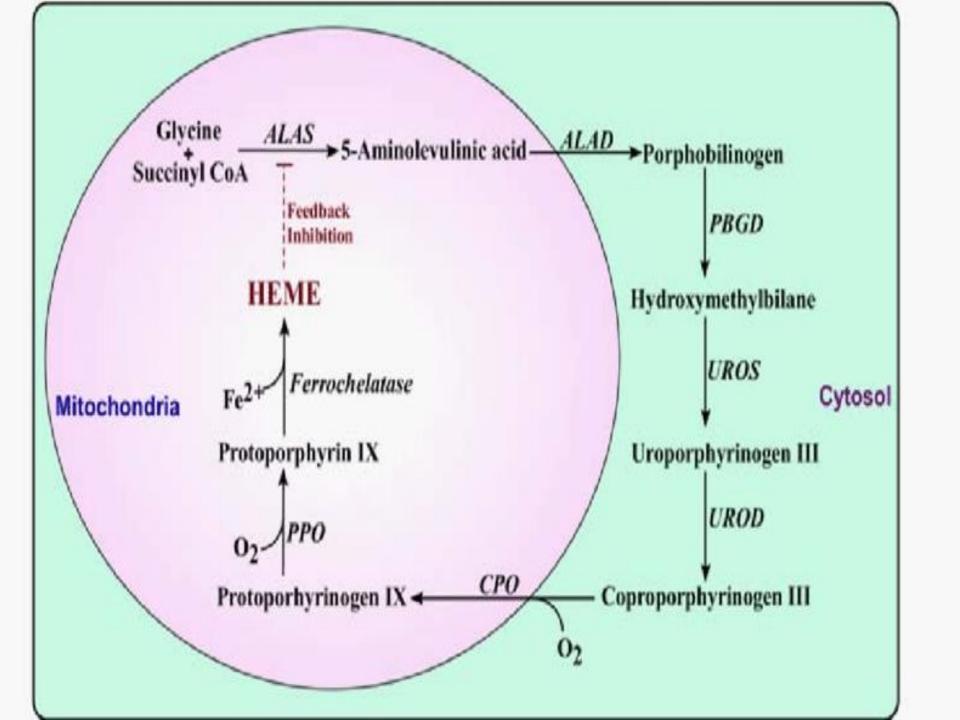
Gower 2- alpha(2), epsilon (2)

Fetal haemoglobin (HbF) alpha(2), gamma(2

Adult haemoglobins HBA- alpha(2), beta(2) HbA2- alpha(2), delta(2

Haem

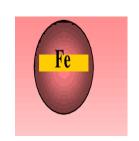

Synthesized in: bone marrow. .


The initial reaction and the last three steps in the formation of porphyrins occur in mitochondria, whereas the intermediate steps of the biosynthetic pathway occur in the cytosol.

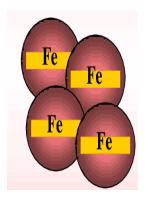
substrates:

Succinyl-CoA + glycine

It is an eight-step process



Myoglobin:


- Consists of a single polypeptide chain.
- Structurally similar to the individual globin chain of the Hb molecule.
- It can bind only to one molecule of oxygen with high affinity.
- Store oxygen inside muscle tissue to be used later on when Po₂ be very low.

LO 1

Myoglobin

Haemoglobin

Haemoglobin vs Myoglobin:

LO 1

	HAEMOGLOBIN	MYOGLOBIN
Number of chains	4 polypeptide chains.	single polypeptide chains.
Type of structure	A tetramer.	A monomer.
Binds	Binds CO2, CO, NO, O ² and H+.	Binds to O ₂ , tightly and firmly
Their presence	Systemically all over the body.	In muscles cells.
Types of curve	Sigmoid binding curve. (cooperative binding)	Hyperbolic curve.
Also known as	Hb	Mb
Role	It is oxygen carrier	It stores oxygen
Concentration in blood	High in RBC.	Low.

LO 2&3

The Hb molecule exists in two forms:

T (tense or taut)

- a) is a deoxyhaemoglobin that lacks of oxygen.
- b) globin units being held tightly together by electrostatic bonds

R (relaxed)

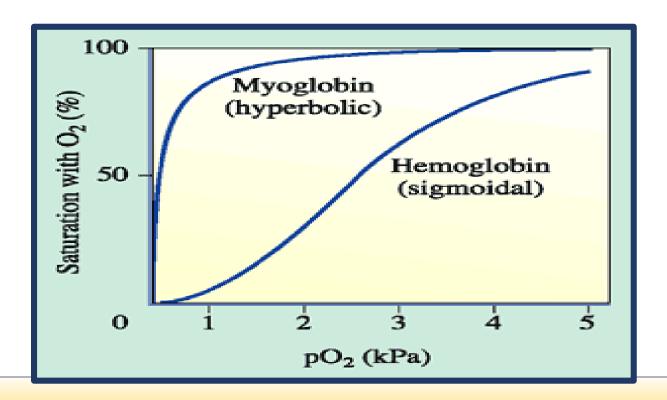
- a) is an oxyhemoglobin (fully oxygenated)
- b) bonds are broken when binds to oxygen
- c) Hb has much higher affinity for oxygen than in T form



Cooperative binding of oxygen to Hb:

LO₂

- As each O2 molecule attached, it alters the conformation of Hb, making it easier for others to be loaded with O2.
- Conversely, as each O² molecule is released, the change in Hb makes it easier for other molecules to be unloaded.



Oxygen Dissociation Curve LO 2&3

Its a graphical representation of the relationship between the amount of oxygen bound to hemoglobin and the partial pressure of oxygen in the blood.

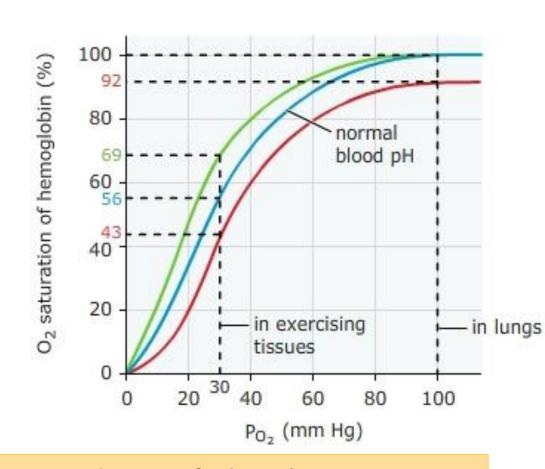
FACTORS THAT AFFECT OXYGEN DISSOCIATION CURVE OF HB

shift the oxygen dissociation curve to the right (low affinity of Hb to O₂) (Bohr effect)

shift the oxygen dissociation curve to the **left** (**high affinity of Hb to O**₂) (Haldane Effect)

- † temperature
- ↑ PCO₂
- **↓** pH
- 个 2,3 DPG

- **↓** temperature.
- **↓** PCO₂
- 个 pH
- **↓** 2,3 DPG
- ↑ CO poisoning

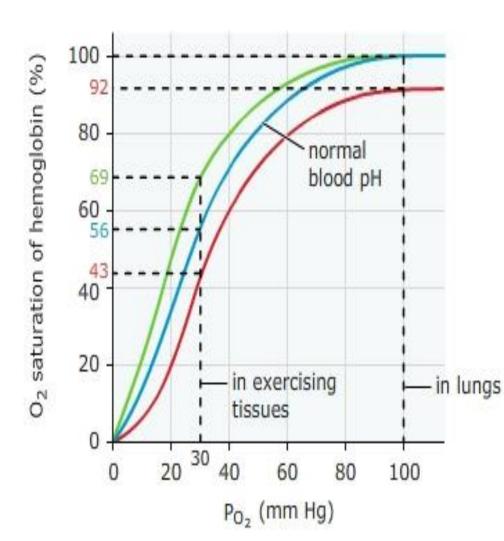


(Bohr effect)

Is a decrease in the O₂ affinity of a Hb in response to:

- ↑ temperature
- ↑ PCO₂
- **↓** pH
- 个 2,3 DPG

2,3 DPG: Is a special intermediate of glycolysis in erythrocyte that plays a role in liberating O_2 from Hb.



(Haldane Effect)

Is an increase in the O_2 affinity of Hb promotes the release of PCO_2 in response to:

- ↓ temperature.
- ↓ PCO₂
- 个 pH
- ↓ 2,3 DPG
- ↑ CO poisoning

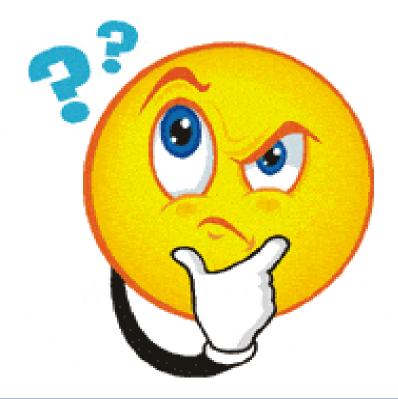
Why 2,3-BPG decreases the oxygen affinity of Hb?

Explain why patient with CO Poisoning has cherry red or pink cheek appearance.?

Ministry Of Higher Education And Scientific Research

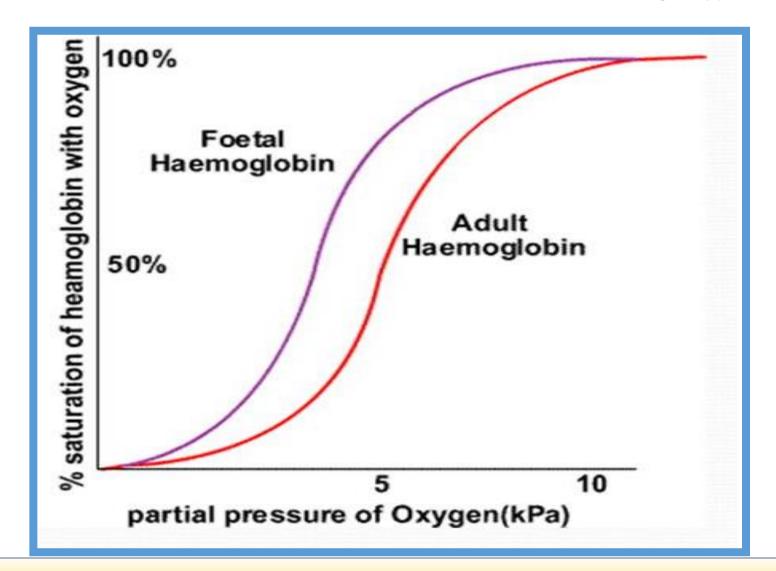
LO 3&4

2,3-BPG decreases the oxygen affinity of Hb by binding to deoxyhaemoglobin but not to oxyhaemoglobin. This binding stabilizes the taut form of deoxyHb.

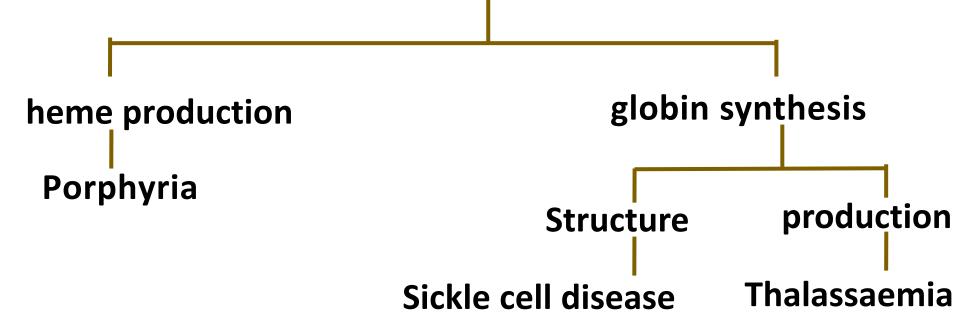


LO 3&4

Why Hb F has high oxygen affinity than Hb A?



LO3&4


LO 3 &4

- 1) Hb F having γ subunits that allows to bind more strongly to oxygen
- 2) 2,3-BPG interacts much more with Hb A than Hb F. because the adult β subunit has more positive charges than the fetal γ subunit, which attract the negative charges from 2,3-BPG.
 - Due to the preference of 2,3-BPG for Hb A, Hb F binds to oxygen with high affinity.

Haemoglobin abnormality (haemoglobinopathy):

Is a variant form of **Hb** that is often inherited and may cause a blood disorder in

Porphyria

- > Is a group of disorders caused by abnormalities in the chemical steps that lead to heme production.
- > The most common types of porphyria are:
 - a) Acute intermittent porphyria (AIP).
 - b) Porphyria Cutanea Tarda (PCT)

Sickle Cell Anaemia.

Caused by a mutation in the β -globin gene that changes the sixth amino acid from **Glutamic acid** (charged AA) to valine (nonpolar AA).

- a) Homozygotes only produce abnormal β-chains that make HbS.
- b) Heterozygotes produce a mixture of normal and abnormal β-chains that make normal HbA and HbS (HbAS),

Sickle Cell Anaemia.

When HbS is deoxygenated, the molecules Haemoglobin polymerize to form pseudocrystalline structures known as 'tactoids'. These distort the red cell membrane and produce a characteristic of sickle-shaped

Sickle cell-

Nucleated red cell

cells.

Thalassaemia

There is a reduced rate of production in one or more of the globin chains. Which results in imbalanced globin chain synthesis.

 α -Thalassaemia.

defect in the synthesis of α globin chain.

β-Thalassaemia

defect in the synthesis of β globin chain.

α-Thalassaemia.

LO 5

Single-gene mutation $(-\alpha/\alpha\alpha)$

Clinically silent

Two-gene mutation $(-\alpha/-\alpha)$ or $(\alpha\alpha/--)$

microcytic anemia

Three-gene mutation (--/-α);
HbH disease

β chains precipitate as β4 tetramers (HbH).

Moderately severe

Four-gene mutation (--/--) (hydrops fetalis)

forming γ4 tetramers (Hb Bart's)

Incompatible with life

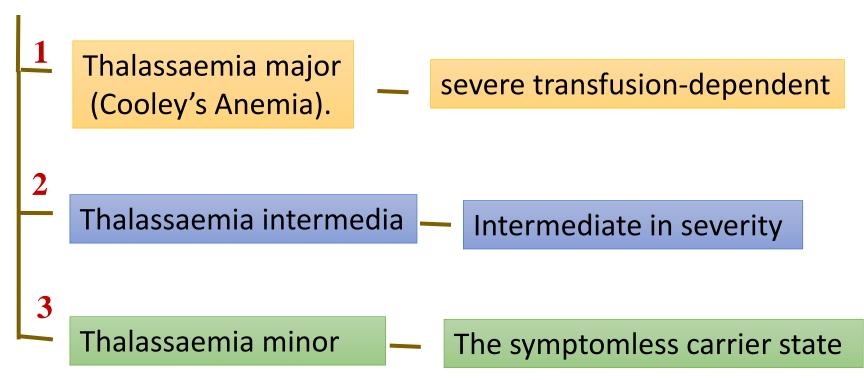
β-Thalassaemia.

mutations in the β-globin gene

generation of a stop codon in mRNA

termination of globin chain synthesis

variable reduction in β globin output



Types of β-Thalassaemia.

UNIVERSITY OF BASRAH AL-ZAHRAA MEDICAL COLLEGE

Ministry of higher Education and Scientific Researches

